1. Write down the next two terms in the following quadratic sequence.

$$
\begin{array}{cccc}
& 9,13,19,27 \ldots \\
& -1, \frac{2}{8} & \frac{2}{9}, & 16 \\
n^{2}: & 1, & 4, & \\
n+7 & 8 & 9 & 10
\end{array} 11
$$

$$
n^{2}+n+n+\ldots
$$

2. Write down the next two terms in the following quadratic sequence.

$$
\begin{array}{cccccc}
& -5, & 0, & 9, & 22 \ldots \\
5 & 9 & 13 \\
4 & 4 & \\
2 n^{2} & 2 & 8 & 18 & 32 \\
-(n+6) & -7 & -8 & -9 & -10
\end{array}
$$

3. The nth term of a sequence is

$$
2 n^{2}+4 n-1
$$

Work out the 10th term of the sequence

$$
\begin{aligned}
& 2(10)^{2}+4(10)-1 \\
& 2(100)+40-1 \\
& 200+40-1
\end{aligned}
$$

4. The nth term of a sequence is

$$
n^{2}+2 n
$$

Work out the first 5 terms in the sequence

$$
\begin{aligned}
& (1)^{2}+2(1)=3 \\
& (2)^{2}+2(2)=8 \\
& (3)^{2}+2(3)=15 \\
& (4)^{2}+2(4)=24 \\
& (5)^{2}+2(5)=35
\end{aligned}
$$

$$
3,8,15,24,35(2)
$$

5. Work out the formula for the nth term of the quadratic sequence:

$$
\begin{array}{ccccc}
& 5, & 11, & 19, & 29 \ldots \\
& 6 & 8 & 10 \\
n^{2} & 1 & 2 & 2 & \\
& 4 & 9 & 16 \\
3 n+1 & 4 & 7 & 10 & 13
\end{array}
$$

6. Work out the formula for the nth term of the quadratic sequence:

$$
\begin{array}{rcccc}
& 2,10,22,38 \ldots \\
& 8 & 12 & 16 & \\
& 4 & 4 & \\
2 n^{2} & 2 & 8 & 18 & 32 \\
2 n-2 & 0 & 2 & 4 & 6
\end{array}
$$

$$
2_{n}^{2}+2 n-n^{2}(4)
$$

7. Work out the formula for the nth term of the quadratic sequence:

$$
\begin{array}{lllll}
& & 15, & 19, & 25, \\
& 43 & 6 & 8 \\
n^{2} & 1 & 4 & 2 & 9 \\
n+13 & 14 & 15 & 16 & 17
\end{array}
$$

$$
n^{2}+n+!. .3 .
$$

8. Work out the formula for the nth term of the quadratic sequence:

$$
\begin{array}{ccccc}
2,10, & 24, & 44 \ldots \\
8 & 14 & 20 \\
6 & 6 & \\
3 n^{2} & 3 & 12 & 27 & 48 \\
-n & -1 & -2 & -3 & -4
\end{array}
$$

9. Work out the formula for the nth term of the quadratic sequence:

$$
\begin{array}{ccccc}
& 19, & 15, & 9,1 \ldots \\
& -4 & -6 & -8 \\
-n^{2} & -1 & -4 & -2 & -9 \\
\hline-n+21 & 20 & 19 & 18 & 17
\end{array}
$$

10. Work out the formula for the nth term of the quadratic sequence:

$$
\begin{array}{ccccc}
\begin{array}{cc}
-2, & -1, \\
-1, & 2
\end{array} & 3 \\
\frac{1}{2} n^{2} & 1 / 2 & 2 & 9 / 2 & 8 \\
& & & 8 \\
-\frac{5}{2} n & -3 & -\frac{1}{2} & -4
\end{array}
$$

11. A quadratic sequence starts:

$$
6,10,16,24 \ldots
$$

a) Show that the nth term is $n^{2}+n+4$

$$
\begin{array}{ccccc}
& 6 & 10 & 16 & 24 \\
& 4 & & 4^{2} & 1 \\
4 & 4 & 9 & 8 & 16 \\
n+4 & 5 & 6 & 7 & 8
\end{array}
$$

$$
n_{1}^{2}+\ldots \ldots+\ldots
$$

b) Hence find the term that has value 136

$$
\begin{aligned}
& n^{2}+n+4=136 \\
& n^{2}+n-132=0 \\
& (n+12)(n-11)=0 \\
& n=-12 n=11
\end{aligned}
$$

12. A quadratic sequence starts:

$$
-8,2,16,34 \ldots
$$

a) Show that the nth term is $2 n^{2}+4 n-14$

$$
\left.\begin{array}{ccccc}
& -8 & 2 & 16 & 34 \\
& 10 & 14 & 18
\end{array}\right)
$$

$$
\begin{equation*}
2 n_{1}^{2}+\ldots 4-14 \ldots \tag{4}
\end{equation*}
$$

b) Hence find the term that has value 272

$$
\begin{aligned}
& 2 n^{2}+4 n-14=272 \\
& n^{2}+2 n-7=136 \\
& n^{2}+2 n-143=0 \\
&(n+13)(n-11)=0 \\
& n=-13 n=11
\end{aligned}
$$

